Recurrent Neural Networks
This module belongs to the category " Deep learning algorithms" .
Description
This module is used to initiate a Recurrent Neural Networks estimator based on SmartPredict library.
Parameters
The Recurrent Neural Networks module
Optimization parameters
The available optimizers for the RNN are:
adam
rmsprop
adagrad
adamax
sgd
Other optimization parameters can also be set: Learning rate , Beta Gradient, Clipping by Norm or by Value, Epsilon Momentum, Rho.
Loss function
The loss function can be:
binary_xentropy
categorical_xentropy
sparse_categorical _xentropy
hinge
mae
cosine
The module also contains a range of parameters such as : layer cells, timestamp, hidden recurrent units...
Last updated